Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Geroscience ; 46(1): 309-325, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37318716

RESUMO

This study examined whether a 3-month mild-exercise intervention could improve executive function in healthy middle-aged and older adults in a randomized control trial. Ultimately, a total of 81 middle-aged and older adults were randomly assigned to either an exercise group or a control group. The exercise group received 3 months of mild cycle exercise intervention (3 sessions/week, 30-50 min/session). The control group was asked to behave as usual for the intervention period. Before and after the intervention, participants did color-word matching Stroop tasks (CWST), and Stroop interference (SI)-related reaction time (RT) was assessed as an indicator of executive function. During the CWST, prefrontal activation was monitored using functional near-infrared spectroscopy (fNIRS). SI-related oxy-Hb changes and SI-related neural efficiency (NE) scores were assessed to examine the underlying neural mechanism of the exercise intervention. Although the mild-exercise intervention significantly decreased SI-related RT, there were no significant effects of exercise intervention on SI-related oxy-Hb changes or SI-related NE scores in prefrontal subregions. Lastly, changes in the effects of mild exercise on NE with advancing age were examined. The 81 participants were divided into two subgroups (younger-aged subgroup [YA], older-aged subgroup [OA], based on median age [68 years.]). Interestingly, SI-related RT significantly decreased, and SI-related NE scores in all ROIs of the prefrontal cortex significantly increased only in the OA subgroup. These results reveal that a long-term intervention of very light-intensity exercise has a positive effect on executive function especially in older adults, possibly by increasing neural efficiency in the prefrontal cortex.


Assuntos
Função Executiva , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Pessoa de Meia-Idade , Idoso , Função Executiva/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Córtex Pré-Frontal , Exercício Físico/fisiologia , Teste de Stroop
3.
Neurobiol Aging ; 133: 107-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939430

RESUMO

Physical exercise has positive impacts on hippocampal memory decline with aging. One of the postulated neurobiological mechanisms of the decline is reduced catecholaminergic projections from the locus coeruleus to the hippocampus. Recent human studies revealed that very light exercise rapidly enhances memory and pupil diameter, which suggests that light exercise may improve memory via neural circuits involved in the ascending arousal system, including the locus coeruleus, even in older adults. Thus, we aimed to clarify the effects of a single bout of light-intensity exercise (60% ventilatory threshold) on mnemonic discrimination performance, an index of hippocampal memory function, in healthy older adults using a randomized crossover design. Pupil diameter was measured during exercise as a physiological marker of the ascending arousal system. Discrimination of highly similar stimuli to the targets improved after exercise when compared to the resting control performance. Importantly, causal mediation analysis showed that pupil dilation during exercise mediated the memory improvement. These results suggest that brief light exercise rapidly enhances memory, possibly by upregulating the ascending arousal system.


Assuntos
Memória , Pupila , Idoso , Humanos , Nível de Alerta/fisiologia , Exercício Físico/fisiologia , Hipocampo , Memória/fisiologia , Pupila/fisiologia , Estudos Cross-Over
4.
Neuroscience ; 531: 117-129, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678588

RESUMO

A positive affective response modulates the effects of aerobic exercise on prefrontal executive function (EF). Groove rhythm (GR), eliciting the feeling of wanting to move to music, is useful for inducing positive affective response during exercise. Three minutes of listening to GR activated the left dorsolateral prefrontal cortex (l-DLPFC) and enhanced EF in participants who had higher psychological responses to GR. This finding prompted us to test the hypothesis that the combination of GR and exercise (GREX) induces positive psychological responses that enhance PFC function through entrainment of body movements and musical beats. 41 participants were administered two experimental conditions: three min of very light-intensity (30% V̇ O2peak) exercise combined with GR and combined with a white-noise metronome (WMEX). Before and after exercise, participants performed a Stroop task and were monitored for l-DLPFC activity with functional near-infrared spectroscopy. GREX enhanced EF and l-DLPFC activity in participants who experienced greater subjective feelings of audiomotor entrainment and increased excitement with GREX. These psychological responses were predictive of the impact of GREX on l-DLPFC activity and EF. These findings, together with previous results, support the hypothesis that GR allows us to boost the cognitive benefits of exercise via l-DLPFC activity only in those who enjoy groove, and suggest that subjective audiomotor entrainment is a key mechanism of this boosting effect.


Assuntos
Córtex Pré-Frontal , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Córtex Pré-Frontal/fisiologia , Função Executiva/fisiologia , Exercício Físico/fisiologia , Teste de Stroop , Cognição
5.
Cereb Cortex Commun ; 4(2): tgad010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323937

RESUMO

Acute mild exercise has been observed to facilitate executive function and memory. A possible underlying mechanism of this is the upregulation of the ascending arousal system, including the catecholaminergic system originating from the locus coeruleus (LC). Prior work indicates that pupil diameter, as an indirect marker of the ascending arousal system, including the LC, increases even with very light-intensity exercise. However, it remains unclear whether the LC directly contributes to exercise-induced pupil-linked arousal. Here, we examined the involvement of the LC in the change in pupil dilation induced by very light-intensity exercise using pupillometry and neuromelanin imaging to assess the LC integrity. A sample of 21 young males performed 10 min of very light-intensity exercise, and we measured changes in the pupil diameters and psychological arousal levels induced by the exercise. Neuromelanin-weighted magnetic resonance imaging scans were also obtained. We observed that pupil diameter and psychological arousal levels increased during very light-intensity exercise, which is consistent with previous findings. Notably, the LC contrast, a marker of LC integrity, predicted the magnitude of pupil dilation and psychological arousal enhancement with exercise. These relationships suggest that the LC-catecholaminergic system is a potential a mechanism for pupil-linked arousal induced by very light-intensity exercise.

6.
Neuroimage ; 277: 120244, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37353097

RESUMO

Physical exercise, even stress-free very-light-intensity exercise such as yoga and very slow running, can have beneficial effects on executive function, possibly by potentiating prefrontal cortical activity. However, the exact mechanisms underlying this potentiation have not been identified. Evidence from studies using pupillometry demonstrates that pupil changes track the real-time dynamics of activity linked to arousal and attention, including neural circuits from the locus coeruleus to the cortex. This makes it possible to examine whether pupil-linked brain dynamics induced during very-light-intensity exercise mediate benefits to prefrontal executive function in healthy young adults. In this experiment, pupil diameter was measured during 10 min of very-light-intensity exercise (30% V˙o2peak). A Stroop task was used to assess executive function before and after exercise. Prefrontal cortical activation during the task was assessed using multichannel functional near-infrared spectroscopy (fNIRS). We observed that very-light-intensity exercise significantly elicited pupil dilation, reduction of Stroop interference, and task-related left dorsolateral prefrontal cortex activation compared with the resting-control condition. The magnitude of change in pupil dilation predicted the magnitude of improvement in Stroop performance. In addition, causal mediation analysis showed that pupil dilation during very-light-intensity exercise robustly determined subsequent enhancement of Stroop performance. This finding supports our hypothesis that the pupil-linked mechanisms, which may be tied to locus coeruleus activation, are a potential mechanism by which very light exercise enhances prefrontal cortex activation and executive function. It also suggests that pupillometry may be a useful tool to interpret the beneficial impact of exercise on boosting cognition.


Assuntos
Pupila , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Cognição , Função Executiva/fisiologia , Exercício Físico/fisiologia , Córtex Pré-Frontal/fisiologia
7.
J Sport Health Sci ; 12(5): 568-591, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148971

RESUMO

BACKGROUND: There is a growing interest to understand the neurobiological mechanisms that drive the positive associations of physical activity and fitness with measures of cognitive performance. To better understand those mechanisms, several studies have employed eye-based measures (e.g., eye movement measures such as saccades, pupillary measures such as pupil dilation, and vascular measures such as retinal vessel diameter) deemed to be proxies for specific neurobiological mechanisms. However, there is currently no systematic review providing a comprehensive overview of these studies in the field of exercise-cognition science. Thus, this review aimed to address that gap in the literature. METHODS: To identify eligible studies, we searched 5 electronic databases on October 23, 2022. Two researchers independently extracted data and assessed the risk of bias using a modified version of the Tool for the assEssment of Study qualiTy and reporting in EXercise (TESTEX scale, for interventional studies) and the critical appraisal tool from the Joanna Briggs Institute (for cross-sectional studies). RESULTS: Our systematic review (n = 35 studies) offers the following main findings: (a) there is insufficient evidence available to draw solid conclusions concerning gaze-fixation-based measures; (b) the evidence that pupillometric measures, which are a proxy for the noradrenergic system, can explain the positive effect of acute exercise and cardiorespiratory fitness on cognitive performance is mixed; (c) physical training- or fitness-related changes of the cerebrovascular system (operationalized via changes in retinal vasculature) are, in general, positively associated with cognitive performance improvements; (d) acute and chronic physical exercises show a positive effect based on an oculomotor-based measure of executive function (operationalized via antisaccade tasks); and (e) the positive association between cardiorespiratory fitness and cognitive performance is partly mediated by the dopaminergic system (operationalized via spontaneous eye-blink rate). CONCLUSION: This systematic review offers confirmation that eye-based measures can provide valuable insight into the neurobiological mechanisms that may drive positive associations between physical activity and fitness and measures of cognitive performance. However, due to the limited number of studies utilizing specific methods for obtaining eye-based measures (e.g., pupillometry, retinal vessel analysis, spontaneous eye blink rate) or investigating a possible dose-response relationship, further research is necessary before more nuanced conclusions can be drawn. Given that eye-based measures are economical and non-invasive, we hope this review will foster the future application of eye-based measures in the field of exercise-cognition science.


Assuntos
Aptidão Cardiorrespiratória , Exercício Físico , Estudos Transversais , Exercício Físico/fisiologia , Exame Físico , Cognição/fisiologia
8.
J Physiol Sci ; 72(1): 23, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153491

RESUMO

Although it has been hypothesized that moderate to vigorous exercise immediately modulates cognition via ascending arousal system activation, such activation during very-light to light exercise has remained uncertain. Here, we aimed to uncover the exact exercise intensity necessary for ascending arousal system activation using pupillometry. The pupil diameter, psychological arousal, and ventilation during graded exercise of 26 young males were analyzed based on %[Formula: see text]. Pupils dilated with very-light exercise compared to rest, stabilized, and then drastically increased again with moderate exercise and above. Pupil dilation with very-light exercise was positively correlated with increases in psychological arousal. Thus, we have shown that there are two phases of pupil dilation during graded exercise: one with very-light exercise coinciding with psychological arousal response, and the other with moderate exercise or above similar to the ventilation increase pattern. This unique pupil dilation pattern provides physiological evidence of ascending arousal system activation with very-light exercise.


Assuntos
Nível de Alerta , Pupila , Nível de Alerta/fisiologia , Cognição , Humanos , Masculino , Pupila/fisiologia
9.
JMIR Serious Games ; 10(3): e38200, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169992

RESUMO

BACKGROUND: Virtual reality (VR) exergaming is a new intervention strategy to help humans engage in physical activity to enhance mood. VR exergaming may improve both mood and executive function by acting on the prefrontal cortex, expanding the potential benefits. However, the impact of VR exergaming on executive function has not been fully investigated, and associated intervention strategies have not yet been established. OBJECTIVE: This study aims to investigate the effects of 10 minutes of VR exergaming on mood and executive function. METHODS: A total of 12 participants played the exergame "FitXR" under 3 conditions: (1) a VR exergame condition (ie, exercise with a head-mounted display condition [VR-EX]) in which they played using a head-mounted display, (2) playing the exergame in front of a flat display (2D-EX), and (3) a resting condition in which they sat in a chair. The color-word Stroop task (CWST), which assesses executive function; the short form of the Profile of Mood States second edition (POMS2); and the short form of the Two-Dimensional Mood Scale (TDMS), which assess mood, were administered before and after the exercise or rest conditions. RESULTS: The VR-EX condition increased the POMS2 vigor activity score (rest and VR-EX: t11=3.69, P=.003) as well as the TDMS arousal (rest vs 2D-EX: t11=5.34, P<.001; rest vs VR-EX: t11=5.99, P<.001; 2D-EX vs VR-EX: t11=3.02, P=.01) and vitality scores (rest vs 2D-EX: t11=3.74, P=.007; rest vs VR-EX: t11=4.84, P=.002; 2D-EX vs VR-EX: t11=3.53, P=.006), suggesting that VR exergaming enhanced mood. Conversely, there was no effect on CWST performance in either the 2D-EX or VR-EX conditions. Interestingly, the VR-EX condition showed a significant positive correlation between changes in CWST arousal and reaction time (r=0.58, P=.046). This suggests that the effect of exergaming on improving executive function may disappear under an excessively increased arousal level in VR exergaming. CONCLUSIONS: Our findings showed that 10 minutes of VR exergaming enhanced mood but did not affect executive function. This suggests that some VR content may increase cognitive demands, leading to psychological fatigue and cognitive decline as an individual approaches the limits of available attentional capacity. Future research must examine the combination of exercise and VR that enhances both brain function and mood.

10.
Sci Rep ; 12(1): 9835, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764684

RESUMO

We previously found that a 10-min bout of moderate-intensity exercise (50% maximal oxygen uptake) under normobaric and hypoxic conditions (fraction of inspired oxygen [[Formula: see text]] = 0.135) reduced executive performance and neural activity in the left dorsolateral prefrontal cortex (DLPFC). To examine whether this cognitive fatigue is due to a decrease in SpO2 during exercise, we compared executive performance and related prefrontal activation between two experimental conditions, in which the participants inhaled normobaric hypoxic gas ([Formula: see text]= 0.135) (hypoxic exercise [HE]) or hypoxic gas adjusted so that SpO2 during exercise remained at the resting level (milder hypoxic exercise [ME]). ME condition showed that reaction time in executive performance decreased (t[13] = 2.228, P < 0.05, d = 0.34, paired t-test) and left DLPFC activity increased (t[13] = -2.376, P < 0.05, d = 0.63, paired t-test) after exercise compared with HE condition. These results showed that the HE-induced reductions in the left DLPFC activity and executive performance were both suppressed in the ME condition, supporting the hypothesis that exercise-induced cognitive fatigue under hypoxic environment is due to hypoxemia during exercise. This may lead to the development of a method of coping with cognitive fatigue due to exercise that causes hypoxemia.


Assuntos
Exercício Físico , Hipóxia , Cognição/fisiologia , Exercício Físico/fisiologia , Fadiga , Humanos , Oxigênio
11.
Sci Rep ; 12(1): 7377, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35513415

RESUMO

Hearing a groove rhythm (GR), which creates the sensation of wanting to move to the music, can also create feelings of pleasure and arousal in people, and it may enhance cognitive performance, as does exercise, by stimulating the prefrontal cortex. Here, we examined the hypothesis that GR enhances executive function (EF) by acting on the left dorsolateral prefrontal cortex (l-DLPFC) while also considering individual differences in psychological responses. Fifty-one participants underwent two conditions: 3 min of listening to GR or a white-noise metronome. Before and after listening, participants performed the Stroop task and were monitored for l-DLPFC activity with functional near-infrared spectroscopy. Our results show that GR enhanced EF and l-DLPFC activity in participants who felt a greater groove sensation and a more feeling clear-headed after listening to GR. Further, these psychological responses predict the impact of GR on l-DLPFC activity and EF, suggesting that GR enhances EF via l-DLPFC activity when the psychological response to GR is enhanced.


Assuntos
Música , Córtex Pré-Frontal , Função Executiva/fisiologia , Exercício Físico/fisiologia , Humanos , Córtex Pré-Frontal/fisiologia , Teste de Stroop
12.
Sci Rep ; 11(1): 22657, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811374

RESUMO

Running, compared to pedaling is a whole-body locomotive movement that may confer more mental health via strongly stimulating brains, although running impacts on mental health but their underlying brain mechanisms have yet to be determined; since almost the mechanistic studies have been done with pedaling. We thus aimed at determining the acute effect of a single bout of running at moderate-intensity, the most popular condition, on mood and executive function as well as their neural substrates in the prefrontal cortex (PFC). Twenty-six healthy participants completed both a 10-min running session on a treadmill at 50%[Formula: see text] and a resting control session in randomized order. Executive function was assessed using the Stroop interference time from the color-word matching Stroop task (CWST) and mood was assessed using the Two-Dimensional Mood Scale, before and after both sessions. Prefrontal hemodynamic changes while performing the CWST were investigated using functional near-infrared spectroscopy. Running resulted in significant enhanced arousal and pleasure level compared to control. Running also caused significant greater reduction of Stroop interference time and increase in Oxy-Hb signals in bilateral PFCs. Besides, we found a significant association among pleasure level, Stroop interference reaction time, and the left dorsolateral PFCs: important brain loci for inhibitory control and mood regulation. To our knowledge, an acute moderate-intensity running has the beneficial of inducing a positive mood and enhancing executive function coinciding with cortical activation in the prefrontal subregions involved in inhibitory control and mood regulation. These results together with previous findings with pedaling imply the specificity of moderate running benefits promoting both cognition and pleasant mood.


Assuntos
Afeto , Função Executiva/fisiologia , Exercício Físico/fisiologia , Córtex Pré-Frontal/fisiologia , Corrida/fisiologia , Adulto , Comportamento , Encéfalo/fisiologia , Mapeamento Encefálico , Cognição , Feminino , Frequência Cardíaca , Humanos , Masculino , Microglia , Tempo de Reação , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Teste de Stroop , Adulto Jovem
13.
Med Sci Sports Exerc ; 53(7): 1425-1433, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33433152

RESUMO

PURPOSE: Higher aerobic fitness, a physiological marker of habitual physical activity, is likely to predict higher executive function based on the prefrontal cortex (PFC), according to current cross-sectional studies. The exact biological link between the brain and the brawn remains unclear, but the brain dopaminergic system, which acts as a driving force for physical activity and exercise, can be hypothesized to connect the missing link above. Recently, spontaneous eye blink rate (sEBR) was proposed and has been used as a potential, noninvasive marker of brain dopaminergic activity in the neuroscience field. To address the hypothesis above, we sought to determine whether sEBR is a mediator of the association between executive function and aerobic fitness. METHODS: Thirty-five healthy young males (18-24 yr old) had their sEBR measured while staring at a fixation cross while at rest. They underwent an aerobic fitness assessment using a graded exercise test to exhaustion and performed a color-word Stroop task as an index of executive function. Stroop task-related cortical activation in the left dorsolateral PFC (l-DLPFC) was monitored using functional near-infrared spectroscopy. RESULTS: Correlation analyses revealed significant correlations among higher aerobic fitness, less Stroop interference, and higher sEBR. Moreover, mediation analyses showed that sEBR significantly mediated the association between aerobic fitness and Stroop interference. In addition, higher sEBR was correlated with higher neural efficiency of the l-DLPFC (i.e., executive function was high, and the corresponding l-DLPFC activation was relatively low). CONCLUSION: These results indicate that the sEBR mediates the association between aerobic fitness and executive function through prefrontal neural efficiency, which clearly supports the hypothesis that brain dopaminergic function works to connect, at least in part, the missing link between aerobic fitness and executive function.


Assuntos
Piscadela/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Aptidão Física/fisiologia , Córtex Pré-Frontal/fisiologia , Adolescente , Adulto , Voluntários Saudáveis , Humanos , Masculino , Teste de Stroop , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...